3.3.38 \(\int (c (d \sec (e+f x))^p)^n (a+b \sec (e+f x))^2 \, dx\) [238]

Optimal. Leaf size=211 \[ \frac {2 a b \, _2F_1\left (\frac {1}{2},-\frac {n p}{2};\frac {1}{2} (2-n p);\cos ^2(e+f x)\right ) \left (c (d \sec (e+f x))^p\right )^n \sin (e+f x)}{f n p \sqrt {\sin ^2(e+f x)}}-\frac {\left (b^2 n p+a^2 (1+n p)\right ) \cos (e+f x) \, _2F_1\left (\frac {1}{2},\frac {1}{2} (1-n p);\frac {1}{2} (3-n p);\cos ^2(e+f x)\right ) \left (c (d \sec (e+f x))^p\right )^n \sin (e+f x)}{f \left (1-n^2 p^2\right ) \sqrt {\sin ^2(e+f x)}}+\frac {b^2 \left (c (d \sec (e+f x))^p\right )^n \tan (e+f x)}{f (1+n p)} \]

[Out]

2*a*b*hypergeom([1/2, -1/2*n*p],[-1/2*n*p+1],cos(f*x+e)^2)*(c*(d*sec(f*x+e))^p)^n*sin(f*x+e)/f/n/p/(sin(f*x+e)
^2)^(1/2)-(b^2*n*p+a^2*(n*p+1))*cos(f*x+e)*hypergeom([1/2, -1/2*n*p+1/2],[-1/2*n*p+3/2],cos(f*x+e)^2)*(c*(d*se
c(f*x+e))^p)^n*sin(f*x+e)/f/(-n^2*p^2+1)/(sin(f*x+e)^2)^(1/2)+b^2*(c*(d*sec(f*x+e))^p)^n*tan(f*x+e)/f/(n*p+1)

________________________________________________________________________________________

Rubi [A]
time = 0.17, antiderivative size = 211, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {4033, 3873, 3857, 2722, 4131} \begin {gather*} -\frac {\left (a^2 (n p+1)+b^2 n p\right ) \sin (e+f x) \cos (e+f x) \, _2F_1\left (\frac {1}{2},\frac {1}{2} (1-n p);\frac {1}{2} (3-n p);\cos ^2(e+f x)\right ) \left (c (d \sec (e+f x))^p\right )^n}{f \left (1-n^2 p^2\right ) \sqrt {\sin ^2(e+f x)}}+\frac {2 a b \sin (e+f x) \, _2F_1\left (\frac {1}{2},-\frac {n p}{2};\frac {1}{2} (2-n p);\cos ^2(e+f x)\right ) \left (c (d \sec (e+f x))^p\right )^n}{f n p \sqrt {\sin ^2(e+f x)}}+\frac {b^2 \tan (e+f x) \left (c (d \sec (e+f x))^p\right )^n}{f (n p+1)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c*(d*Sec[e + f*x])^p)^n*(a + b*Sec[e + f*x])^2,x]

[Out]

(2*a*b*Hypergeometric2F1[1/2, -1/2*(n*p), (2 - n*p)/2, Cos[e + f*x]^2]*(c*(d*Sec[e + f*x])^p)^n*Sin[e + f*x])/
(f*n*p*Sqrt[Sin[e + f*x]^2]) - ((b^2*n*p + a^2*(1 + n*p))*Cos[e + f*x]*Hypergeometric2F1[1/2, (1 - n*p)/2, (3
- n*p)/2, Cos[e + f*x]^2]*(c*(d*Sec[e + f*x])^p)^n*Sin[e + f*x])/(f*(1 - n^2*p^2)*Sqrt[Sin[e + f*x]^2]) + (b^2
*(c*(d*Sec[e + f*x])^p)^n*Tan[e + f*x])/(f*(1 + n*p))

Rule 2722

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
)*Sqrt[Cos[c + d*x]^2]))*Hypergeometric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2], x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rule 3857

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x])^(n - 1)*((Sin[c + d*x]/b)^(n - 1)
*Int[1/(Sin[c + d*x]/b)^n, x]), x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 3873

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[2*a*(b/d
), Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 4033

Int[((c_.)*((d_.)*sec[(e_.) + (f_.)*(x_)])^(p_))^(n_)*((a_.) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol]
 :> Dist[c^IntPart[n]*((c*(d*Sec[e + f*x])^p)^FracPart[n]/(d*Sec[e + f*x])^(p*FracPart[n])), Int[(a + b*Sec[e
+ f*x])^m*(d*Sec[e + f*x])^(n*p), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[n]

Rule 4131

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(-C)*Cot
[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x
] /; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rubi steps

\begin {align*} \int \left (c (d \sec (e+f x))^p\right )^n (a+b \sec (e+f x))^2 \, dx &=\left ((d \sec (e+f x))^{-n p} \left (c (d \sec (e+f x))^p\right )^n\right ) \int (d \sec (e+f x))^{n p} (a+b \sec (e+f x))^2 \, dx\\ &=\left ((d \sec (e+f x))^{-n p} \left (c (d \sec (e+f x))^p\right )^n\right ) \int (d \sec (e+f x))^{n p} \left (a^2+b^2 \sec ^2(e+f x)\right ) \, dx+\frac {\left (2 a b (d \sec (e+f x))^{-n p} \left (c (d \sec (e+f x))^p\right )^n\right ) \int (d \sec (e+f x))^{1+n p} \, dx}{d}\\ &=\frac {b^2 \left (c (d \sec (e+f x))^p\right )^n \tan (e+f x)}{f (1+n p)}+\frac {\left (2 a b \left (\frac {\cos (e+f x)}{d}\right )^{n p} \left (c (d \sec (e+f x))^p\right )^n\right ) \int \left (\frac {\cos (e+f x)}{d}\right )^{-1-n p} \, dx}{d}+\left (\left (a^2+\frac {b^2 n p}{1+n p}\right ) (d \sec (e+f x))^{-n p} \left (c (d \sec (e+f x))^p\right )^n\right ) \int (d \sec (e+f x))^{n p} \, dx\\ &=\frac {2 a b \, _2F_1\left (\frac {1}{2},-\frac {n p}{2};\frac {1}{2} (2-n p);\cos ^2(e+f x)\right ) \left (c (d \sec (e+f x))^p\right )^n \sin (e+f x)}{f n p \sqrt {\sin ^2(e+f x)}}+\frac {b^2 \left (c (d \sec (e+f x))^p\right )^n \tan (e+f x)}{f (1+n p)}+\left (\left (a^2+\frac {b^2 n p}{1+n p}\right ) \left (\frac {\cos (e+f x)}{d}\right )^{n p} \left (c (d \sec (e+f x))^p\right )^n\right ) \int \left (\frac {\cos (e+f x)}{d}\right )^{-n p} \, dx\\ &=\frac {2 a b \, _2F_1\left (\frac {1}{2},-\frac {n p}{2};\frac {1}{2} (2-n p);\cos ^2(e+f x)\right ) \left (c (d \sec (e+f x))^p\right )^n \sin (e+f x)}{f n p \sqrt {\sin ^2(e+f x)}}-\frac {\left (a^2+\frac {b^2 n p}{1+n p}\right ) \cos (e+f x) \, _2F_1\left (\frac {1}{2},\frac {1}{2} (1-n p);\frac {1}{2} (3-n p);\cos ^2(e+f x)\right ) \left (c (d \sec (e+f x))^p\right )^n \sin (e+f x)}{f (1-n p) \sqrt {\sin ^2(e+f x)}}+\frac {b^2 \left (c (d \sec (e+f x))^p\right )^n \tan (e+f x)}{f (1+n p)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.51, size = 200, normalized size = 0.95 \begin {gather*} \frac {\csc (e+f x) \left (a^2 \left (2+3 n p+n^2 p^2\right ) \cos ^2(e+f x) \, _2F_1\left (\frac {1}{2},\frac {n p}{2};1+\frac {n p}{2};\sec ^2(e+f x)\right )+b n p \left (b (1+n p) \, _2F_1\left (\frac {1}{2},1+\frac {n p}{2};2+\frac {n p}{2};\sec ^2(e+f x)\right )+2 a (2+n p) \cos (e+f x) \, _2F_1\left (\frac {1}{2},\frac {1}{2} (1+n p);\frac {1}{2} (3+n p);\sec ^2(e+f x)\right )\right )\right ) \sec (e+f x) \left (c (d \sec (e+f x))^p\right )^n \sqrt {-\tan ^2(e+f x)}}{f n p (1+n p) (2+n p)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c*(d*Sec[e + f*x])^p)^n*(a + b*Sec[e + f*x])^2,x]

[Out]

(Csc[e + f*x]*(a^2*(2 + 3*n*p + n^2*p^2)*Cos[e + f*x]^2*Hypergeometric2F1[1/2, (n*p)/2, 1 + (n*p)/2, Sec[e + f
*x]^2] + b*n*p*(b*(1 + n*p)*Hypergeometric2F1[1/2, 1 + (n*p)/2, 2 + (n*p)/2, Sec[e + f*x]^2] + 2*a*(2 + n*p)*C
os[e + f*x]*Hypergeometric2F1[1/2, (1 + n*p)/2, (3 + n*p)/2, Sec[e + f*x]^2]))*Sec[e + f*x]*(c*(d*Sec[e + f*x]
)^p)^n*Sqrt[-Tan[e + f*x]^2])/(f*n*p*(1 + n*p)*(2 + n*p))

________________________________________________________________________________________

Maple [F]
time = 0.12, size = 0, normalized size = 0.00 \[\int \left (c \left (d \sec \left (f x +e \right )\right )^{p}\right )^{n} \left (a +b \sec \left (f x +e \right )\right )^{2}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*(d*sec(f*x+e))^p)^n*(a+b*sec(f*x+e))^2,x)

[Out]

int((c*(d*sec(f*x+e))^p)^n*(a+b*sec(f*x+e))^2,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(d*sec(f*x+e))^p)^n*(a+b*sec(f*x+e))^2,x, algorithm="maxima")

[Out]

integrate((b*sec(f*x + e) + a)^2*((d*sec(f*x + e))^p*c)^n, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(d*sec(f*x+e))^p)^n*(a+b*sec(f*x+e))^2,x, algorithm="fricas")

[Out]

integral((b^2*sec(f*x + e)^2 + 2*a*b*sec(f*x + e) + a^2)*((d*sec(f*x + e))^p*c)^n, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (c \left (d \sec {\left (e + f x \right )}\right )^{p}\right )^{n} \left (a + b \sec {\left (e + f x \right )}\right )^{2}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(d*sec(f*x+e))**p)**n*(a+b*sec(f*x+e))**2,x)

[Out]

Integral((c*(d*sec(e + f*x))**p)**n*(a + b*sec(e + f*x))**2, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*(d*sec(f*x+e))^p)^n*(a+b*sec(f*x+e))^2,x, algorithm="giac")

[Out]

integrate((b*sec(f*x + e) + a)^2*((d*sec(f*x + e))^p*c)^n, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int {\left (c\,{\left (\frac {d}{\cos \left (e+f\,x\right )}\right )}^p\right )}^n\,{\left (a+\frac {b}{\cos \left (e+f\,x\right )}\right )}^2 \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*(d/cos(e + f*x))^p)^n*(a + b/cos(e + f*x))^2,x)

[Out]

int((c*(d/cos(e + f*x))^p)^n*(a + b/cos(e + f*x))^2, x)

________________________________________________________________________________________